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Abstract. It is expected that the dynamics of recurrent neural networks can be described by a
set of macroscopic order parameters. For such descriptions to exist, macroscopic specification
of microscopic states of neural networks during the dynamics has to be possible. We study
this problem for the case of Coolen–Sherrington (CS) theory, which successfully describes
qualitative aspects of the dynamics of the Hopfield-type recurrent neural network. We show
that the macroscopic specification is incomplete in CS theory by providing direct evidence that
theequipartitioningassumption employed by CS theory prevents the theory from describing the
dynamics quantitatively.

1. Introduction

Considering a Hopfield-type autoassociative memory that memorizes an extensive number
of randomly generated patterns, it is observed that its dynamics becomes independent of
the realization of the patterns as the sizeN of the model becomes sufficiently large. From
observations like this, it is expected that the dynamics of such models can be described
by a rather simple deterministic time-evolution rule of macroscopic order parameters.
For such descriptions to exist, specification of the microscopic states by the macroscopic
order parameters during the dynamics has to be possible. At (thermal) equilibrium of the
Hopfield model, such a specification is possible because the corresponding Boltzmann–
Gibbs microscopic state distribution is described solely in terms of a macroscopic order
parameter, the energy. The problem is whether or not, by a suitable choice of macroscopic
order parameters, such a specification is possible throughout the dynamics.

We study this problem for the case of Coolen–Sherrington (CS) theory [1, 2]. The
reasons for focusing on CS theory are as follows. First, it is complex enough to reproduce
qualitative aspects of the dynamics of the Hopfield model [1, 2] and other related models
[3]. Second, it is still simple compared with competing [4] or more advanced [5] theories;
it allows us to investigate theoretical details and to execute numerical experiments.

2. CS theory

We consider networks ofN binary neurons.si ∈ {−1, 1} denotes the state of theith neuron.
The microscopic states of the networks are described by the state vectors = (s1, . . . , sN).
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States of neurons are assumed to be updated asynchronously. The ratewi(s) of the
transitionssi →−si is determined by the ‘local field’hi(s) as

wi(s) = 1
2(1− si tanhβhi(s)) hi(s) =

∑
j 6=i

Jij sj (1)

where Jij is a synaptic weight from neuronj to neuroni and β the so-called inverse
temperature. When{Jij } are symmetric, i.e.Jij = Jji , the dynamics (1) leads to the
Boltzmann–Gibbs equilibrium distributionp(s) ∝ exp(−βE(s)), determined by the energy
E(s) = −∑i<j Jij sisj .

For an autoassociative memory memorizing a set ofp random patternsξµ =
(ξ
µ

1 , . . . , ξ
µ

N) with Hebbian synapsesJij = (1/N)
∑

µ ξ
µ

i ξ
µ

j , the overlapm between the
state vectors and the pattern to be retrieved (we assume that pattern 1 is nominated for
retrieval) is generally used as a macroscopic order parameter:m = (1/N)

∑
i ξ

1
i si . It is

known [6] thatm is insufficient for specification of microscopic states during the dynamics:
different microscopic states with the samem value will evolve differently, depending on
their history.

The CS theory [1, 2] employs another macroscopic order parameterr in addition tom:

r = 1

α

∑
µ>1

(mµ)2 (2)

wheremµ are the overlaps between the state vectors and non-nominated patternsµ (6= 1),
andα = p/N is the memory rate. To obtain deterministic flow equations ofm and r the
CS theory assumes the following:

(i) self-averaging of the flow with respect to randomly chosen patterns;
(ii) probability equipartitioning within the (m, r) subshells: when the macroscopic state

is given bym and r, the probability distribution of the corresponding microscopic states
can be assumed to be uniform over the (m, r) subshell, with regard to calculation of the
flow equations.

The former assumption is supported by numerical simulations with sufficiently largeN .
The latter assumption, theequipartitioningassumption, will be safe if (m, r) is sufficient for
specification of microscopic states. At thermal equilibrium, the equipartitioning condition
is a natural consequence of the Boltzmann–Gibbs distribution, which is described in terms
of m and r only. It should be noted that assuming equipartitioning is equivalent, in the
thermodynamical limit, to employing the so-called maximum entropy principle [7], which
states that we are maximally non-committal with respect to information missing from the
(m, r) specification.

Under these assumptions the resulting deterministic flow equations are

dm

dt
=
∫

dzDm,r [z] tanh[β(m+ z)] −m
1

2

dr

dt
= 1

α

∫
dzDm,r [z]z tanh[β(m+ z)] + 1− r (3)

whereDm,r [z] is the distribution of the ‘noise’ terms that represent the interference in the
local field hi caused by non-nominated patterns. A replica calculation gives the following
result forDm,r [z] within the so-called RS ansatz,

Dm,r [z] = e−(1+z)
2/2αr

2
√

2παr

{
1−

∫
Dy tanh

[
λy

(
1

ραr

)1/2

+ (1+ z)ρ rAGS

r
+ µ

]}
+e−(1−z)

2/2αr

2
√

2παr

{
1−

∫
Dy tanh

[
λy

(
1

ραr

)1/2

+ (1− z)ρ rAGS

r
− µ

]}
(4)
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Figure 1. Time evolution ofr obtained by simulations with (m, r) annealing (full curve), by
ordinary simulations without (m, r) annealing (dotted curve) and by CS theory (dashed curve).
α = 0.1, β = +∞ andm(t = 0) = 0.3.

1 ≡ ρα(r − rAGS) (5)

rAGS ≡ λ2

ρ2α
(6)

whereDy = (dy/√2π) e−y
2/2 is the Gaussian measure. The parameters{q, λ, ρ, µ} are

determined fromm, r andα by the following CS saddle-point equations:

r = 1− ρ(1− q)2
[1− ρ(1− q)]2

λ = ρ
√
αq

1− ρ(1− q)
m =

∫
Dy tanh(λy + µ) q =

∫
Dy tanh2(λy + µ). (7)

The CS theory successfully describes the observation that the noise distribution is not
actually Gaussian. It approximately reproduces the trajectories in the (m, r) plane obtained
by numerical simulations. However, it fails to describe the time evolution ofm and r,
especially when retrieval fails (see, e.g., [8]): simulation results exhibit an overall slowing
down compared with the theory. It has been reported that the noise distributions given by
the CS theory are quantitatively different from those given by simulations [9].

3. (m, r) annealing

The CS saddle-point equations (7) are formally quite similar to the AGS saddle-point
equations [10]. Based on the formal similarity between them, we formulate a process, which
we will call (m, r) annealing, whose thermal equilibrium corresponds to the equipartitioning
condition. First, we introduce an external field proportional to the nominated patternξ1.
The local fieldhi(s) is now given by

hi(s) =
∑
j 6=i

Jij sj + bξ1
i (8)

whereb is a coefficient representing the magnitude of the external field. One can then show
the following proposition.
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Figure 2. Noise distributions: (a)t = 1, before (m, r) annealing; (b)t = 1, after (m, r)
annealing; (c)t = 2, before (m, r) annealing; (d)t = 2, after (m, r) annealing. β = +∞,
α = 0.1 andm(t = 0) = 0.1.

Proposition. For a givenm, r andα, solve the CS saddle-point equations (7) and define
b by the identityµ = ρ(m + b) using the parametersµ andρ. Then the dynamics, with
the local field given by equation (8) and with the inverse temperature given byρ, in the RS
ansatz, has a thermal equilibrium distribution corresponding to the equipartitioning of the
(m, r) subshell.

We call the dynamics defined above (m, r) annealing. The proof of the proposition is
straightforward; one can derive the CS saddle-point equations, for example, by following
the analysis of Amitet al [10], or by using the standard procedure of the cavity method [11],
which leads to the AGS saddle-point equations. It should be noted that (m, r) annealing
actually achieves the equipartitioning distribution in the limitN → ∞ since the energy
associated with the (m, r) annealing is written in terms ofm andr.

The proposition is regarded as showing a practical method for realizing the
equipartitioning condition by the use of (m, r) annealing. A sufficiently large network
working in the ‘(m, r) annealing mode’ is seen, in thermal equilibrium, as a Gibbs sampler
sampling microscopic states from the (m, r) subshell with uniform probability. If one
executes (m, r) annealing in the course of the ordinary dynamics with sufficient frequency,
the equipartitioning condition will be satisfied throughout the dynamics and hence we can
expect that CS theory becomes exact. Figure 1 shows the time evolution ofr obtained
by ordinary dynamics, by ordinary dynamics with (m, r) annealing executed with a short
interval (averaged over three samples), and by CS theory. The result with (m, r) annealing
is in good agreement with CS theory, as expected. It should be noted that the trajectory is
in the RSB region for aboutt > 4. Since the consideration in this paper is based on the
RS ansatz we cannot expect it to hold in the RSB region. We can see in figure 1 that the
agreement becomes worse at a later stage, aboutt > 4, and it can be ascribed to RSB.
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Next, we investigate the noise distributions. One can expect that, when the
equipartitioning condition is actually satisfied by the use of (m, r) annealing, the noise
distributions should be identical with those given by CS theory. Figures 2(a) and (c) show
the noise distributions obtained by ordinary dynamics (full curves) and calculated by CS
theory (equation (4)) using the corresponding (m, r) values (dashed curves), withβ = +∞,
α = 0.1 andm(t = 0) = 0.1, at t = 1 and 2, respectively. Figures 2(b) and (d) show
the noise distributions with the same conditions as in (a) and (c), respectively, butafter
executing (m, r) annealing. These results show that (m, r) annealing improves the fit
between the numerical experiments and the theory.

Figure 3 shows the time evolution ofm and r in numerical simulations, where (m, r)
annealing is executed once att = 2 in order to demonstrate how (m, r) annealing affects
the dynamics. Execution of (m, r) annealing att = 2 changes the dynamics in such a
manner that it somewhat recovers from the slow down, approaching the time evolution
curves predicted by CS theory.

Figure 3. Time evolution ofm andr in simulations where (m, r) annealing is executed att = 2
(full curve), of ordinary dynamics (dotted curve), and of CS theory (dashed curve).α = 0.1,
β = +∞, m(t = 0) = 0.3 andr(t = 0) = 1.

4. Discussion

From these results one can infer that CS theory is indeed exact if the equipartitioning
assumption holds; conversely, deviations between the numerical simulation of ordinary
dynamics and CS theory, observed in time evolution [8] and in noise distributions [9], are
quantitatively explained by the failure of the equipartitioning assumption. This indicates
that the dynamics of the model actually selects microscopic states which are not physically
typical within the (m, r) subshell determined by the current values ofm andr.

The failure of the simplest one-parameter theory, based on the overlapm, is explained,
in view of CS theory, as follows. For a givenm, almost all the microscopic states belonging
to them subshell belong to the (m, r) subshell withr = 1 (i.e. the states withr = 1 dominate
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overwhelmingly in number within them subshell), whereas the dynamics actually chooses
microscopic states withr > 1 which arenot typical within them subshell. By analogy, the
incompleteness of CS theory indicates that the dynamics actually chooses microscopic states
that are not typical within the (m, r) subshell. This also indicates that the set of macroscopic
order parametersm andr is insufficient for the specification of microscopic states during the
dynamics. More advanced or alternative theory is certainly required in order to specify such
non-typical microscopic states appropriately by macroscopic quantities, if such specification
is possible.
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